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Abstract 

Background  Current guidelines recommend good glycemic control in patients with type 2 diabetes (T2D) 
to limit the progression of associated complications with combination therapies. This study aimed to compare 
the rate of chronic kidney disease (CKD) progression between patients who did or did not receive sodium-glucose 
cotransporter-2 inhibitors (SGLT2i) using a multistate model with two intermediate states (i.e., CKD stage 4 (CKD4) 
and 5 (CKD5)) and one absorbing state (i.e., death).

Methods  Data from patients with T2D and CKD stage 3 (CKD3) were retrieved for analysis. Patients treated 
with SGLT2i were matched 1:2 by prescription date with non-SGLT2i patients. The multistate model was constructed 
from Cox survival regression models specific to each transition stage. Cumulative failure and transition probabilities 
were estimated from bootstrapping.

Results  Data from 6582 patients (2194 and 4388 patients in the SGLT2i and non-SGLT2i groups, respectively) were 
analyzed. At 10-year follow-up, patients in the SGLT2i group were more likely to remain at CKD3 compared to the non-
SGLT2i group: 82.3% (95% CI 79.9%, 84.6%) vs 60.4% (57.6%, 63.4%). Transition probabilities to CKD4, CKD5, and death 
were lower in the SGLT2i group than non-SGLT2i group: 11.3% (9.5%, 13.3%) vs 19.8% (17.4%, 22.2%), 2.4% (1.5%, 3.4%) 
vs 7.4% (5.8%, 9.0%), and 4.1% (2.9%, 5.3%) vs 12.4% (10.3%, 14.6%), respectively.

Conclusion  SGLT2i may delay the decline in renal function and slow CKD progression compared to standard care 
without SGLT2i.
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Introduction
Type 2 diabetes (T2D) is a common noncommunica-
ble disease that places increasing burden on healthcare 
systems, patients and their families globally [1]. Inad-
equate blood glucose control commonly leads to severe 
complications including microvascular (such as chronic 
kidney disease (CKD) and diabetic retinopathy (DR)) 
and macrovascular diseases (such as cardiovascular dis-
ease (CVD)). T2D is recognized as the main risk factor 
for CKD, with reported increases of 74% in T2D-related 
CKD between 1990 and 2017 [2]. International clinical 
practice guidelines recommend metformin as a first-line 
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treatment, with additional treatment options if insuf-
ficient blood glucose control is achieved or if patients 
are at increased risk of developing T2D-related vascular 
complications [3].

Meta-analyses have provided evidence of the efficacy 
of sodium-glucose cotransporter-2 inhibitor (SGLT2i) 
[4–9], a new class of second-line medication for glyce-
mic control, to reduce the rate of CKD progression in 
patients with T2D; real-world data showed a reduction in 
CKD risk of 9.5–14.2% relative to other second-line med-
ications [10]. Recently, the beneficial effects of SGLT2i 
have also been reported in nondiabetic patients through 
reduced glomerular hypertension independent of glyce-
mic control [11, 12].

Progression of CKD can be analyzed using multistate 
models. Patients diagnosed with early-stage CKD (i.e., 
CKD stage 3 (CKD3)) may progress to more advanced 
CKD stage 4 (CKD4), 5 (CKD5), and premature death. 
Although the reno-protective effects of SGLT2i have 
been reported in patients with T2D, the rate of progres-
sion through the various CKD stages [13] mediated by 
SGLT2i in real world data is not well described. There-
fore, the aim of this cohort study was to investigate the 
effects of SGLT2i on multistate CKD progression using 
real-world data from Thai patients with T2D and CKD3.

Methods
This study included a retrospective cohort of patients 
diagnosed with T2D in Ramathibodi Hospital from 
1st January 2010 to 2019 with follow up available until 
31st December 2022 (see Fig.  1). T2D was identified 
from hospital records according to the International 
Statistical Classification of Diseases, 10th revision (ICD-
10), consecutive fasting blood glucose ≥ 126  mg/dl, or 
glycated hemoglobin (HbA1C) ≥ 6.5%, or commonly 
prescribed T2D medications as per our previous 
publication [10]. Adult T2D patients were eligible for 
inclusion if they were diagnosed with CKD (identified 
by ICD-10) or if they had an estimated glomerular 
filtration rate (eGFR) < 60 ml/min/1.73 m2 (estimated by 
the 2021 CKD-EPI equation [14]) recorded persistently 
for 3 months or longer, see Fig. 1. Patients were excluded 
if they were previously diagnosed with CKD4 (eGFR 
15–29  ml/min/1.73 m2), CKD5 (eGFR < 15  ml/min/1.73 
m2) or received any renal replacement therapy at the 
time of T2D diagnosis, or had no available eGFR data. 
Patients receiving SGLT2i were matched 1:2 with 
patients receiving other second-line antihyperglycemic 
medications using the earliest prescription date within a 
3-year time window.

Clinical, medical, and laboratory databases were 
linked using encrypted patient hospital numbers to 
identify the T2D-CKD cohort. This study was approved 

by the Institutional Review Board of the Faculty of 
Medicine Ramathibodi Hospital, Mahidol University 
(MURA2020/125). No informed consent was required 
regarding retrospective data collection.

Treatments, outcomes, and covariates
We compared any of SGLT2is (i.e., Dapagliflozin, Cana-
gliflozin, Empagliflozin, and Luseogliflozin) with second-
line antihyperglycemic medications (i.e., sulfonylureas, 
thiazolidinediones, or dipeptidyl peptidase-4 inhibi-
tors), prescribed before progression of CKD3, accord-
ing to T2D treatment guidelines. Outcomes of interests 
included CKD3 progression to stages CKD4, CKD5, and/
or death. In-hospital death was identified from hospital 
databases. Some baseline covariate data were missing, 
ranging from 19.6% (height) to 41.1% (high-density lipo-
protein cholesterol (HDL-C) level), see Additional file 1: 
Table S1. Multiple imputation of missing data by chained 
equations were performed with 70 replications, assuming 
data were missing at random.

Fig. 1  Flow of patient inclusion
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Statistical analysis
Baseline characteristics were described by mean and 
standard deviation (SD) or median and interquartile range 
(IQR) for continuous variables, and number and percentage 
for categorical variables. Development of a multistate model 
was based on four disease states, i.e., the initial state (CKD3), 
two intermediate states (CKD4 and CKD5), and the 
absorbing state (death) (Fig.  2). One directional transition 
was assumed for each state resulting in a total of six 
transitions: CKD3→CKD4, CKD3→CKD5, CKD3→death, 
CKD4→CKD5, CKD4→death, and CKD5→death. Failure 
functions for each transition were subsequently estimated 
from a semiparametric Cox survival model.

This study was analyzed using an intention-to-treat 
(ITT) approach. Patients initiating SGLT2i before CKD 
progression were counted in the SGLT2i group regard-
less of how long they received this medication; other-
wise, patients were included in the non-SGLT2i group. 
Propensity score (PS) analysis was applied to estimate 
the treatment effect of SGLT2i on CKD progression as 
follows: First, a logit treatment model was constructed 
to estimate PS by regression of the SGLT2i variable on 
covariates (i.e., age, sex, body mass index (BMI), hemo-
globin A1c (HbA1c) level, HDL-C level, baseline eGFR, 
hypertension, CVD, DR, and health insurance scheme 
access). Covariate balance was checked to ensure the 
weighted standardized mean differences did not exceed 
0.2 [15]. Second, a semiparametric Cox model was con-
structed by fitting the SGLT2i variable against time to 
CKD progression weighted by PS and 1-PS for SGLT2i 
and non-SGLT2i groups, respectively. Modeling with 
time interaction was applied in a transition if the propor-
tional hazards assumption was violated. Hazard ratios 
(HR) along with 95% confidence interval (CI) were esti-
mated. Transition probabilities were estimated for each 
transition state using a cumulative failure function with 
1000-replication bootstrapping. All multistate predic-
tions were performed under mstatecox and multistate 

packages [16, 17] using STATA version 18 (StataCorp, 
Texas, USA). A P-value < 0.05 was considered statistically 
significant.

Results
Baseline characteristics
A total of 6582 patients with CKD and T2D were 
included in this analysis (2194 patients in the SGLT2i 
group and 4388 patients in the non-SGLT2i group) with 
median follow-up time (IQR) of 44.9 (18.3, 82.9) months, 
see Fig. 1. Patient summary characteristics are described 
in Table 1. Mean age (SD) was 68.6 (10.4) years and 53% 
of patients were male. Most patients were overweight 
with median BMI (IQR) of 26.5 (24.3, 28.9) kg/m2, and 
a median HbA1c (IQR) of 7.0% (6.5%, 8.0%). Approxi-
mately 33% of patients had abnormal HDL-C levels. 
Hypertension was common (92%) and frequency of CVD 
and DR were 26 and 9.4%, respectively.

Baseline characteristics differed significantly between 
SGLT2i and non-SGLT2i groups (see Table  1); patients 
in the SGLT2i group tended to have poorer prognos-
tic factors compared to those in the non-SGLT2i group, 
except for eGFR. However, the covariate imbalance was 
improved following adjustment for the inverse prob-
ability, see Additional file 1: Table S2. Of CKD5 patients, 
dialysis was higher in the SGLT2i group when compared 
to the non-SGLT2i group (76.3 vs 56.0%: P-value = 0.011). 
Only a single patient in each group received kidney trans-
plantation. In the SGLT2i group, the median (IQR) dura-
tion of SGLT2i prescription was 18.0 (7.2, 36.5) months; 
only 23.5% of SGLT2i patients continued SGLT2i to the 
end of follow-up (i.e., were fully adherent to therapy in 
the ITT model).

CKD progression
Of the 6582 patients included at baseline for the initial 
state, 657 (10%) progressed to CKD4, 94 (1.4%) to 
CKD5, and 199 (3.0%) died, leaving the remaining 5632 

Fig. 2  Multistate model of chronic kidney disease progression. The numbers in each box represent the number of patients within and remaining 
in each state; the numbers under each transition state represent the number of patients moving between states
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(85.6%) in the initial CKD3 state at study end (Fig. 2). 
When patients progressed to the intermediate states 
(i.e., CKD4 and CKD5), they were at further risk of 
transition either to CKD5 or death. Of the 657 patients 
who progressed to CKD4, 128 (19.5%) and 51 (7.8%) 
further progressed to CKD5 and death, respectively. A 
total of 49 patients (22.1%) of the 222 at CKD5 died. In 
total, 299 patients (4.5%) transitioned to the absorbing 
state (i.e., death) by study end. Among 222 patients 
who reached CKD5, 132 (59.5%) patients received 
dialysis, whereas 2 (0.9%) and 88 (39.6%) patients 
received kidney transplantation and supportive care, 
respectively.

The cumulative failure and transition probability from 
the initial CKD3 state to each of the intermediate states 
and death are described in Additional file 1: Table S3 and 

S4. Five-year predicted transition probabilities (95% CI) 
from the initial CKD3 state to CKD4, CKD5, and death 
were 10.3% (9.4%, 11.3%), 1.8% (1.4%, 2.2%), and 3.4% 
(2.9%, 4.0%), respectively. For patients that transitioned 
to CKD4, five-year probabilities for moving to states 
CKD5 and death were 12.8% (10.2%, 15.9%) and 3.7% 
(2.4%, 5.6%), respectively. The five-year probability of 
transitioning from CKD5→death was 12.6% (8.6%, 
18.3%). Transition probabilities for CKD progression 
were also estimated according to whether patients were 
treated with SGLT2i or not. Treatment with SGLT2i 
was associated with significantly lower probabilities of 
progression compared to those in the non-SGLT2i group 
for all transitions, with the exception of CKD5→death, 
where the probability was greater for those in the SGLT2i 
group compared to the non-SGLT2i group, see Fig.  3 

Table 1  Baseline characteristics of patients with type 2 diabetes and chronic kidney disease stage 3

BMI, body mass index; CVD, cardiovascular disease; DR, diabetic retinopathy; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; HDL-C, high-density 
lipoprotein cholesterol; IQR, interquartile range; SD, standard deviation

Baseline Characteristics Overall
(N = 6582)

SGLT2i
(n = 2194)

Non-SGLT2i
(n = 4388)

p-value

Age, year,
mean (SD)

68.6 (10.4) 66.8 (9.5) 69.5 (10.8)  < 0.001

Age, year, n (%)

 < 40 62 (0.9) 14 (0.6) 48 (1.1)  < 0.001

 40–60 1296 (19.7) 519 (23.7) 777 (17.7)

 > 60 5224 (79.4) 1661 (75.7) 3563 (81.2)

Sex, male, n (%) 3503 (53.2) 1253 (57.1) 2250 (51.3)  < 0.001

BMI, kg/m2,
median (IQR)

26.5
(24.3, 28.9)

27.3
(25.0, 29.7)

26.1
(23.9, 28.5)

 < 0.001

BMI, kg/m2, n (%)

 < 18 49 (0.7) 14 (0.6) 35 (0.8)  < 0.001

 18–25 2121 (32.2) 530 (24.2) 1591 (36.3)

 > 25 4412 (67.0) 1650 (75.2) 2762 (62.9)

eGFR, ml/min/1.73 m2, mean (SD) 48.9 (8.1) 50.4 (7.4) 48.2 (8.3)  < 0.001

HbA1c, %,
median (IQR)

7.0
(6.5, 8.0)

7.3
(6.6, 8.3)

6.9
(6.4, 7.8)

 < 0.001

HbA1c, %, n (%)

 < 7 3231 (49.1) 871 (39.7) 2360 (53.8)  < 0.001

 ≥ 7 3351 (50.9) 1323 (60.3) 2028 (46.2)

HDL-C, mg/dL,
median (IQR)

43.1
(38.0, 50.1)

42.0
(37.0, 49.0)

44.0
(38.0, 51.0)

 < 0.001

HDL-C, mg/dL, n (%)

 < 40 2187 (33.2) 830 (37.8) 1357 (30.9)  < 0.001

 ≥ 40 4395 (66.8) 1364 (62.2) 3031 (69.1)

Hypertension, n (%) 6023 (91.5) 2052 (93.5) 3971 (90.5)  < 0.001

CVD, n (%) 1732 (26.3) 836 (38.1) 896 (20.4)  < 0.001

DR, n (%) 621 (9.4) 283 (12.9) 338 (7.7)  < 0.001

Health insurance scheme, n (%)

 Universal coverage 1000 (15.2) 177 (8.1) 823 (18.8)  < 0.001

 Social security insurance 180 (2.8) 57 (2.6) 127 (2.9)

 Government officer benefits 4042 (61.4) 1577 (71.9) 2465 (56.2)

 Self-pay/Private insurance 1356 (20.6) 383 (17.5) 973 (22.2)
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and Additional file  1: Table  S3. Ten-year probabilities 
for transition from the baseline CKD3 state to CKD4 
and CKD5 were lower in the SGLT2i group compared to 
the non-SGLT2i group, i.e., 11.3% (9.5%, 13.3%) vs 19.8% 
(17.4%, 22.2%) and 2.4% (1.5%, 3.4%) vs 7.4% (5.8%, 9.0%), 
respectively. In addition, patients in the SGLT2i group 
were less likely to die compared to those in the non-
SGLT2i, i.e., 4.1% (2.9%, 5.3%) vs 12.4% (10.3%, 14.6%), 
see Additional file 1: Table S4.

For patients that received SGLT2i a significant 
reduction in risk of CKD progression was identified 
in almost all transitions compared to those that did 
not receive SGLT2i with HRs (95% CI) of 0.33 (0.26, 
0.41; P-value < 0.001), 0.57 (0.30, 1.09; P-value = 0.087), 
0.32 (0.21, 0.50; P-value < 0.001), 0.46 (0.25, 0.83; 
P-value = 0.010), and 0.27 (0.11, 0.70; P-value = 0.007) 
for each of the transition states of CKD3→CKD4, 
CKD3→CKD5, CKD3→death, CKD4→CKD5, and 
CKD4→death, respectively. Conversely, the risk of 
transitioning from CKD5→death was 1.44 (0.55, 3.76; 
P-value = 0.459) times greater for those patients in the 
SGLT2i group compared to the non-SGLT2i group, but 
this was not significant. For patients undergoing dialysis 
and supportive care, the SGLT2i group had higher risk of 
death compared with the non-SGLT2i group with HRs 
(95% CI) of 1.31 (0.36, 4.83; P-value = 0.680) and 1.72 

(0.52, 5.70; P-value = 0.372) respectively, although this 
was again not significant.

Discussion
We conducted a multi-stage analysis to assess the treat-
ment effects of SGLT2i on CKD progression. Our find-
ings highlight the benefits of SGLT2i treatment in 
patients with T2D and CKD by lowering the probabilities 
for transition from CKD3 to CKD4, CKD5, and/or death 
when compared to patients who had not received SGLT2i 
treatment.

Our findings support those from previous meta-
analyses [4–9] that demonstrated the efficacy of SGLT2i 
in providing renal protection, with a pooled risk reduction 
between 32 and 45%. Of note, with the exception of the 
CREDENCE trial [18], the randomized controlled trials 
that reported renal outcomes (CANVAS program [19], 
EMPA-REG OUTCOME [20], and DECLARE-TIMI 58 
trial [21]), targeted cardiovascular primary endpoints. 
Therefore, only a minority of patients included in 
these trials had documented CKD (i.e., eGFR < 60  ml/
min/1.73 m2) at baseline. Real-world evidence that 
compared SGLT2i with other second-line medications 
also highlighted the reno-protective effects of SGLT2i for 
CKD prevention [10, 22–25]. We previously reported a 
significant 14.2% reduction in CKD incidence in patients 
that received SGLT2i compared to those that received 
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Fig. 3  Cumulative failure probability for each transition between states
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sulfonylureas [10]. The reno-protective effects provided 
by SGLT2i have been observed regardless of eGFR [24, 
25]. Our study was novel in the exclusive selection of 
T2D patients with impaired kidney function at baseline 
to investigate the efficacy of SGLT2i in reducing the rate 
of CKD progression in this real-world cohort.

It is also worth noting the speed with which these ben-
eficial effects are noted. Although our models were simu-
lated over a 10-year period, statistically significant effects 
are seen within the first year for most transitions except 
CKD5 to death, which lacked statistical significance given 
the small number of patients included. The speed of the 
beneficial effects associated with SGLT2i is encouraging 
for patients and highlights the importance of identifying 
those who might benefit most from early intervention.

The mode of action of SGLT2i in lowering serum 
glucose levels is by promoting glucosuria but its reno-
protective effect may be mediated through other mech-
anisms [11, 12]. Natriuresis results following SGLT2i 
treatment, causing intravascular volume contraction and 
subsequently reducing blood pressure. By increasing dis-
tal tubule sodium delivery, tubuloglomerular feedback is 
inhibited leading to afferent arteriolar vasoconstriction. 
These effects lead to a reduction in intraglomerular pres-
sure. In addition, expression of inflammatory biomarkers 
(such as IL-6, TNF receptor 1, and matrix metallopro-
teinase 7) are decreased following SGLT2i treatment [26]. 
Recently, the DAPA-CKD trial [27] showed that SGLT2i 
could significantly reduce a composite renal outcome 
[HR (95% CI) = 0.61 (0.51, 0.72)] compared with placebo, 
independent of glycemic control.

To the best of our knowledge, we are unaware of other 
studies that have investigated the multistate transitions 
of CKD-progression following treatment with SGLT2i. 
Despite the novelty of our study, there were several 
limitations. The percentage of patients with T2D and 
CKD receiving SGLT2i in Thailand compared to standard 
care is still relatively small since its approval in 2015. 
Moreover, SGLT2i have still to be included within the 
universal coverage and social security insurance schemes, 
which support healthcare provision for the majority 
of the Thai population. As such, the estimate of CKD 
progression from CKD5 to death is less precise, given 
the smaller number of affected patients. Although we 
used propensity score adjustment to balance the effects 
of covariates between groups, some unknown factors or 
known factors with unavailable data may exist that could 
not be controlled for. For example, urinary albumin to 
creatinine ratio is not routinely measured in our clinical 
practice and the high rate of missing data could not 
be sufficiently accounted for in our propensity score 
computation. Nevertheless, our results are likely to be 
robust given the bias in our cohort is towards the null, 

i.e. those receiving SGLT2i had more recognized CKD 
risk factors compared to those in the control group 
and a relatively short duration of SGLT2i prescription. 
Furthermore, given that we could only identify 
in-hospital mortality, we could have missed those who 
died in the community. Further large-scale real-world 
cohort analyses of SGLT2i effects at a population level 
would prove beneficial in confirming the magnitude of 
these effects. In addition, personalized prediction models 
for SGLT2i treatments may provide additional benefits to 
patients and guide physicians in clinical decision making 
and best utilization of available resources.

Conclusions
Provision of SGLT2i may be a more effective treat-
ment option for delaying CKD progression in patients 
with T2D than other anti-hyperglycemic agents. Longer 
term evaluation of T2D patients with CKD in receipt 
of SGLT2i, especially in relation to a cost-effectiveness 
analysis, will prove beneficial for the evaluation of health 
outcomes and patient management in resource limited 
settings.
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